The Difference Between Positive and Negative Surprise
Phoebe, played by Lisa Kudrow, has an emotionally rich past. She's experienced just about every emotion on the spectrum, so it's no surprise that her test results provide the best insight into the impact of emotion in speech-to-text technology.
Whereas Phoebe's negative surprised tone was 93% accurate, positive surprise only recorded a 70% accuracy rating. However, this issue doesn't spread beyond Phoebe, as every other character scored similarly high accuracy levels for both.
Interestingly, Joey's positive surprise accuracy levels were the same as Phoebe's negative surprise – 93%. It's the same emotion, but the character's sentiment drastically impacts the way they speak – as indirectly shown by the difference in accuracy levels. While more work is needed to uncover the true reason as to why that is, highlighting the effect of emotion in speech-to-text helps us better understand the true capabilities of ASR and language in general.
Phoebe's positive surprise and Monica & Rachel's fear are what ASR struggles with the most. It begs the question: why does ASR struggle with these emotional tones? Is it because people's voices reach very high pitch ranges in these emotional states?
One thing is clear. We all have different, unique voices, but they also change constantly. And, amongst many factors, emotions greatly determine these changes. But our voices change in other ways too. Monica and Rachel's fearful speech is similarly unique to Phoebe's when positively surprised.
How Can Emotion Improve Speech-to-Text?
Emotions are as complex as our voices - they are a unique array of variations that characterize our lives daily. ASR must adapt to the different emotions and the way we express all the individual differences in our voices.
If our technology only focused on neutral speech, we would be missing out on many variations of everyday life. We're looking to incorporate as much diversity into our systems as possible with continued research. That doesn't just include different languages and dialects. People are happy, stressed, excited, frightened, and angry, or perhaps everything all at once.
Emotions change the way you speak; we need to change how we listen.
Benedetta Cevoli - Data Science Engineer, Speechmatics